Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins.

Identifieur interne : 001A53 ( Main/Exploration ); précédent : 001A52; suivant : 001A54

Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins.

Auteurs : J S Hardwick [États-Unis] ; F G Kuruvilla ; J K Tong ; A F Shamji ; S L Schreiber

Source :

RBID : pubmed:10611304

Descripteurs français

English descriptors

Abstract

The immunosuppressant rapamycin inhibits Tor1p and Tor2p (target of rapamycin proteins), ultimately resulting in cellular responses characteristic of nutrient deprivation through a mechanism involving translational arrest. We measured the immediate transcriptional response of yeast grown in rich media and treated with rapamycin to investigate the direct effects of Tor proteins on nutrient-sensitive signaling pathways. The results suggest that Tor proteins directly modulate the glucose activation and nitrogen discrimination pathways and the pathways that respond to the diauxic shift (including glycolysis and the citric acid cycle). Tor proteins do not directly modulate the general amino acid control, nitrogen starvation, or sporulation (in diploid cells) pathways. Poor nitrogen quality activates the nitrogen discrimination pathway, which is controlled by the complex of the transcriptional repressor Ure2p and activator Gln3p. Inhibiting Tor proteins with rapamycin increases the electrophoretic mobility of Ure2p. The work presented here illustrates the coordinated use of genome-based and biochemical approaches to delineate a cellular pathway modulated by the protein target of a small molecule.

DOI: 10.1073/pnas.96.26.14866
PubMed: 10611304
PubMed Central: PMC24739


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins.</title>
<author>
<name sortKey="Hardwick, J S" sort="Hardwick, J S" uniqKey="Hardwick J" first="J S" last="Hardwick">J S Hardwick</name>
<affiliation wicri:level="4">
<nlm:affiliation>Howard Hughes Medical Institute, Harvard Center for Genomics Research, Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute, Harvard Center for Genomics Research, Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kuruvilla, F G" sort="Kuruvilla, F G" uniqKey="Kuruvilla F" first="F G" last="Kuruvilla">F G Kuruvilla</name>
</author>
<author>
<name sortKey="Tong, J K" sort="Tong, J K" uniqKey="Tong J" first="J K" last="Tong">J K Tong</name>
</author>
<author>
<name sortKey="Shamji, A F" sort="Shamji, A F" uniqKey="Shamji A" first="A F" last="Shamji">A F Shamji</name>
</author>
<author>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10611304</idno>
<idno type="pmid">10611304</idno>
<idno type="pmc">PMC24739</idno>
<idno type="doi">10.1073/pnas.96.26.14866</idno>
<idno type="wicri:Area/Main/Corpus">001A46</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A46</idno>
<idno type="wicri:Area/Main/Curation">001A46</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A46</idno>
<idno type="wicri:Area/Main/Exploration">001A46</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins.</title>
<author>
<name sortKey="Hardwick, J S" sort="Hardwick, J S" uniqKey="Hardwick J" first="J S" last="Hardwick">J S Hardwick</name>
<affiliation wicri:level="4">
<nlm:affiliation>Howard Hughes Medical Institute, Harvard Center for Genomics Research, Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute, Harvard Center for Genomics Research, Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, MA 02138</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
<settlement type="city">Cambridge (Massachusetts)</settlement>
</placeName>
<orgName type="university">Université Harvard</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kuruvilla, F G" sort="Kuruvilla, F G" uniqKey="Kuruvilla F" first="F G" last="Kuruvilla">F G Kuruvilla</name>
</author>
<author>
<name sortKey="Tong, J K" sort="Tong, J K" uniqKey="Tong J" first="J K" last="Tong">J K Tong</name>
</author>
<author>
<name sortKey="Shamji, A F" sort="Shamji, A F" uniqKey="Shamji A" first="A F" last="Shamji">A F Shamji</name>
</author>
<author>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Cycle Proteins (MeSH)</term>
<term>Citric Acid Cycle (physiology)</term>
<term>Culture Media (MeSH)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Glutathione Peroxidase (MeSH)</term>
<term>Glycolysis (physiology)</term>
<term>Nitrogen (metabolism)</term>
<term>Nucleic Acid Hybridization (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Phosphatidylinositol 3-Kinases (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Prions (MeSH)</term>
<term>Repressor Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transcription, Genetic (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Cycle citrique (physiologie)</term>
<term>Glucose (métabolisme)</term>
<term>Glutathione peroxidase (MeSH)</term>
<term>Glycolyse (physiologie)</term>
<term>Hybridation d'acides nucléiques (MeSH)</term>
<term>Milieux de culture (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (MeSH)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Prions (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (MeSH)</term>
<term>Protéines de répression (métabolisme)</term>
<term>Protéines du cycle cellulaire (MeSH)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Transcription génétique (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Glucose</term>
<term>Nitrogen</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Repressor Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cell Cycle Proteins</term>
<term>Culture Media</term>
<term>Glutathione Peroxidase</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Prions</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Transcription génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Glucose</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines de répression</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cycle citrique</term>
<term>Glycolyse</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Citric Acid Cycle</term>
<term>Glycolysis</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Nucleic Acid Hybridization</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Glutathione peroxidase</term>
<term>Hybridation d'acides nucléiques</term>
<term>Milieux de culture</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Prions</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du cycle cellulaire</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The immunosuppressant rapamycin inhibits Tor1p and Tor2p (target of rapamycin proteins), ultimately resulting in cellular responses characteristic of nutrient deprivation through a mechanism involving translational arrest. We measured the immediate transcriptional response of yeast grown in rich media and treated with rapamycin to investigate the direct effects of Tor proteins on nutrient-sensitive signaling pathways. The results suggest that Tor proteins directly modulate the glucose activation and nitrogen discrimination pathways and the pathways that respond to the diauxic shift (including glycolysis and the citric acid cycle). Tor proteins do not directly modulate the general amino acid control, nitrogen starvation, or sporulation (in diploid cells) pathways. Poor nitrogen quality activates the nitrogen discrimination pathway, which is controlled by the complex of the transcriptional repressor Ure2p and activator Gln3p. Inhibiting Tor proteins with rapamycin increases the electrophoretic mobility of Ure2p. The work presented here illustrates the coordinated use of genome-based and biochemical approaches to delineate a cellular pathway modulated by the protein target of a small molecule.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10611304</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>01</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>96</Volume>
<Issue>26</Issue>
<PubDate>
<Year>1999</Year>
<Month>Dec</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins.</ArticleTitle>
<Pagination>
<MedlinePgn>14866-70</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The immunosuppressant rapamycin inhibits Tor1p and Tor2p (target of rapamycin proteins), ultimately resulting in cellular responses characteristic of nutrient deprivation through a mechanism involving translational arrest. We measured the immediate transcriptional response of yeast grown in rich media and treated with rapamycin to investigate the direct effects of Tor proteins on nutrient-sensitive signaling pathways. The results suggest that Tor proteins directly modulate the glucose activation and nitrogen discrimination pathways and the pathways that respond to the diauxic shift (including glycolysis and the citric acid cycle). Tor proteins do not directly modulate the general amino acid control, nitrogen starvation, or sporulation (in diploid cells) pathways. Poor nitrogen quality activates the nitrogen discrimination pathway, which is controlled by the complex of the transcriptional repressor Ure2p and activator Gln3p. Inhibiting Tor proteins with rapamycin increases the electrophoretic mobility of Ure2p. The work presented here illustrates the coordinated use of genome-based and biochemical approaches to delineate a cellular pathway modulated by the protein target of a small molecule.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hardwick</LastName>
<ForeName>J S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Howard Hughes Medical Institute, Harvard Center for Genomics Research, Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuruvilla</LastName>
<ForeName>F G</ForeName>
<Initials>FG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tong</LastName>
<ForeName>J K</ForeName>
<Initials>JK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shamji</LastName>
<ForeName>A F</ForeName>
<Initials>AF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schreiber</LastName>
<ForeName>S L</ForeName>
<Initials>SL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM-52067</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018797">Cell Cycle Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011328">Prions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="D005979">Glutathione Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="C067020">URE2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C083324">TOR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C081135">TOR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018797" MajorTopicYN="N">Cell Cycle Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002952" MajorTopicYN="N">Citric Acid Cycle</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005979" MajorTopicYN="N">Glutathione Peroxidase</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006019" MajorTopicYN="N">Glycolysis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="N">Nucleic Acid Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="Y">Phosphatidylinositol 3-Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011328" MajorTopicYN="Y">Prions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="Y">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>12</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>12</Month>
<Day>28</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>12</Month>
<Day>28</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
<ArticleId IdType="pmc">PMC24739</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.96.26.14866</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 1994 Jul;13(1):119-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Oct;13(10):6012-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8413204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Apr;15(4):2321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7891726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 20;270(5235):467-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Dec;177(23):6910-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1995 Dec;29(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8595651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1996 Sep 15;12(11):1135-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8896280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3070-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9096347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Jun;179(11):3416-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9171383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Sep;179(17):5609-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9287023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 5;273(23):14484-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9603962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Oct 23;282(5389):699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9784122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1998 Oct;8(5):560-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9794821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 1998 Nov;4(11):1293-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9809554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4438-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10200280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Mar 15;15(4):329-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10206192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1999 May;6(5):R129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1999;303:179-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10349646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 6;270(5233):50-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1978 Jan;88(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">147195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1989 Aug;3(8):1166-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2676721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1990 Oct;4(10):1714-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2123465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Feb;11(2):822-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1990286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Jan;175(1):64-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8416910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Dec;176(24):7476-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8002570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Université Harvard</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Kuruvilla, F G" sort="Kuruvilla, F G" uniqKey="Kuruvilla F" first="F G" last="Kuruvilla">F G Kuruvilla</name>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
<name sortKey="Shamji, A F" sort="Shamji, A F" uniqKey="Shamji A" first="A F" last="Shamji">A F Shamji</name>
<name sortKey="Tong, J K" sort="Tong, J K" uniqKey="Tong J" first="J K" last="Tong">J K Tong</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Hardwick, J S" sort="Hardwick, J S" uniqKey="Hardwick J" first="J S" last="Hardwick">J S Hardwick</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:10611304
   |texte=   Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:10611304" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020